驻马店市拓跋英卓卡类印刷信息服务公司新品上市发布隆重举行。率公司高管团队,齐民思酒


【企业理念】

喝真酒,喝健康酒。
喝真酒,喝健康酒。
以诚信为本,以质量为保证,
以顾客为中心 . . .了解更多

全文共2568字,预计阅读时长3分钟

 

 

说起人工智能,很多人张口就能聊个五毛一块的。从历史到未来,从图灵到马斯克,从卷积神经网络再到朴素贝叶斯……但是如果问起模式识别、机器学习有什么区别,就有不少人懵圈了:这难道不是一样东西吗?居然还有区别?

 

 

别怕,你不是一个人。模式识别、机器学习在人工智能领域本就是傻傻分不清楚的孪生兄弟。它们之间究竟有什么渊源,又有何种联系?今天读芯君就带你来理一理这剪不断理还乱的关系。

 

 

从发展史上来讲,这对孪生兄弟都是人工智能历史中辉煌一时的流派。其中模式识别可以归入人工智能领域的元老级别,可惜似乎已经有些过气的征兆,正在慢慢没落消亡。而机器学习则是人工智能领域最基础也是人气最高的天王级选手。

 

AI元老——模式识别

要想知道什么叫做模式识别,那就要先了解什么叫做模式。尽管我们经常把这个词语挂在嘴边,但是要想完全解释清楚,还真得耗费一番功夫。

首先,通常意义上,模式指用来说明事物结构的主观理性形式。它是从生产经验和生活经验中经过抽象和升华提炼出来的核心知识体系。但是需要注意的是,模式并不是事物本身,而是一种存在形式。

那什么是模式识别?它指的是,对表征事物或现象的各种形式的信息进行处理和分析,从而达到对事物或现象进行描述、辨认、分类和解释的目的。

 

 

模式识别从十九世纪五十年代兴起,在二十世纪七八十年代风靡一时,是信息科学和人工智能的重要组成部分,主要被应用于图像分析与处理、语音识别、声音分类、通信、计算机辅助诊断、数据挖掘等方面。尽管模式识别看起来很高大上,而且也有了较长时间的应用,但是其效果似乎总是差强人意。

 

 

例如人类见到一个东西之后,通常就会下意识地给其归类:是动物还是植物,属于哪一门纲目属科,是否可以药用,有果实吗,花朵是否漂亮,是否有毒……这一大串归类构成了人们对于这种事物的整体认知。这就属于人类对于模式的识别,这种技能对于人们甚至是一些动物来说,是非常简单而且几乎是与生俱来的。

但是在模式识别中,机器似乎并不如人们所预料的那样“智能”。这种经由人为提取特征后交给机器,然后让机器去判断其它事的属性的工作流程就像是按图索骥,按照这种方法,虽然有可能找到一匹真正的汗血宝马,但是也有可能找回一只满身恶臭的瘌蛤蟆。

 

 

 

因为对机器来说,哪怕是分辨最简单的“0”与“O”与“o”以及“。”都要费九牛二虎之力。而这也就是为什么我们在使用一些图片转文字等软件时,发现通常经过“翻译”的文本变得错字连篇,而且有时候错的不可思议。

尤其是目前还在大学里为论文苦苦挣扎的学生党,每当用软件转换CAJ文献或者PDF格式的材料时,时不时就会让人觉得这种人工智能简直就是“人工智障”。

 

AI大众情人——机器学习

不同于模式识别中人类主动去描述某些特征给机器,机器学习可以这样理解:机器从已知的经验数据(样本)中,通过某种特定的方法(算法),自己去寻找提炼(训练/学习)出一些规律(模型);提炼出的规律就可以用来判断一些未知的事情(预测)。

也就是说,模式识别和机器学习的区别在于:前者喂给机器的是各种特征描述,从而让机器对未知的事物进行判断;后者喂给机器的是某一事物的海量样本,让机器通过样本来自己发现特征,最后去判断某些未知的事物。

 

 

通俗些来说,模式识别更像是以前我们经历的填鸭式教育,老师教给学生的知识都是纸上谈兵;而机器学习则更像是读万卷书行万里路。

从技术角度分析,机器学习一般会将人类投喂的各种样本以一种数据的形式解析。我们看到的黑色其实只是电脑中RGB都为0的三个参数,白色则是RGB都为255的三个参数。因此在机器的世界里对黑白的分辨是分外容易的。

 

上图是透明的吗?请回答!

机器根据某一事物的海量样本,总结出这一类型事物所具有的普遍规律,总结过程所使用的技能就是我们常说的算法。当足够多的样本使得算法能够总结出一套行之有效的规律后,机器就可以用这些规律对真实世界中的事件做出决策和预测。

 

比如,机器通过一百万个单身狗的样本,总结出了单身狗所具有的一些属性。当下次再给一个样本时,机器就可以很快判断出这个样本究竟是不是单身狗。

 

 

如果统计进一步细化,看一看原始样本中的单身狗都分别是多大年龄脱单,他们的脱单对象都是什么类型,那么机器就可以判断出下一个单身狗样本究竟会在十年后脱单,还是会一辈子孤单。

说到这里,芯君有些心疼自己……

 

 

听起来是不是有那么一点点的玄幻?不要怀疑,机器的预测肯定会比塔罗牌、星座更准,它甚至比你自己还要了解你。

值得一提的是,在机器学习中,尽管电脑可以自行通过样本总结规律,但是依旧需要人工干预来为其提供规律总结的方向以及维度。例如色彩识别需要统计色彩的RGB或者CMYK值,但是要想总结出单身狗的特质,需要统计的就不仅仅是一两个简单的维度了。

例如年龄的数字,身高的数字,肤色的RGB,学识的等级,还有掌握的其他技能例如撒娇、体贴、男子力、女子力,性格的归类,社交程度的评价等等。

但是,最重要的一个参数就是脸,嗯,没错,就是我们常说的颜值。

 

 

否则杨贵妃怎么会在“养在深闺人未识”这种其他参数一片空白的情况下,最后却能“后宫佳丽三千人,三千宠爱在一身”?不得不说,参数与参数之间也是有高低前后之分的。这种参数维度的确定以及参数重要性的评估,综合起来就是模型的建构。

在机器学习领域有着许多不同的流派,不同流派间的算法与建构的模型也是千差万别。就像是在武林江湖中,大家都有一技之能傍身,有人是内功修行,有人是外在技术修行,虽然都是一等一的高手,但是降龙十八掌和独孤九剑则代表了不同的武学巅峰。

 

 

最常见的两种模型分别为符号主义所使用的决策树模型和联结主义所使用的神经网络模型,每种又分别有着相应的多种算法。也就正如武林中的内功有降龙十八掌、九阳神功还有九阴真经,外在技术修行则有独孤九剑、落英神剑以及名门暗器等等。

 

 

读芯君开扒

尽管技术不断兴替,但无一例外的是,新技术的发展是总是建立在原有技术的基础之上。每一个新的成就都是站在巨人的肩膀上所取得的。

尽管新的技术会不断占领潮流,但是这并不意味着旧有技术已经过时。在人工智能领域,模式识别虽然已经逐渐式微,但是它依旧有其独特的作用。例如在一些简单的色彩识别领域,参数维度相对单一,界定也相对明显,如果用大数据去建模计算,无疑是一种大才小用。闻道有先后,术业有专攻——不同的算法,可以在不同领域发挥各自的效用。

 

留言 点赞 发个朋友圈

我们一起探讨AI落地的最后一公里

作者:王俞羽

参考文献链接:

http://www.elecfans.com/rengongzhineng/485519.html

https://www.zhihu.com/question/38106452/answer/211218782

http://blog.csdn.net/feichizhongwu888/article/details/52727958

https://www.cnblogs.com/muchen/p/5434359.html#_label0

来源:百家号                    时间:2018-04-08



模式识别是对表征事物或现象的各种形式的信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。

英文“Pattern”源于法文“Patron”,本来是指可作为大家典范的理想的人,或用以模仿复制的完美的样品。

在模式识别学科中“模式”具有更广泛的意义。

人们在观察事物或现象的时候,常常要寻找它与其他事物或现象的相同或不同之处,根据一定的目的把并不完全的事物或现象组成一类。字符识别就是一个典型的例子。例如汉字“中”可以有各种写法,但都属于同一类别。更为重要的是,即使对于某个“中”的具体写法从未见过,也能把它分到“中”这一类别。人们在路上行走的时候,也总是不断的根据周围的景物,判断它是否能达到目的地,这实际也是不断的在作“正确”和“不正确”的分类判断。

人脑的这种思维能力就构成了“模式”的概念。在以上的例子中,模式是和类别(集合)的概念分不开的,只要认识这个集合的有限数量的事物或现象,就可以识别这个集合中的任意多的事物或现象。

为了强调能从具体的事物或现象中推断出总体,我们就把个别的事物或现象称作“模式”,而把总体称作类别或范畴。也有的学者认为应该把整个的类别称作模式,这样的模式是一种抽象化的概念,如“房屋”,“铁路”,“通俗音乐”等等都是模式,而把具体的对象如人民大会堂称作“房屋”这类模式中的一个样本。这种名次上的不同含义是容易从上下文中弄清楚的。

模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、文字、符号、三位物体和景物以及各种可以用物理的、化学的、生物的传感器对对象进行测量的具体模式进行分类和辨识。

模式识别研究主要集中在两方面,即研究生物体(包括人)是如何感知对象的,属于认知科学的范畴,以及在给定的任务下,如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作着近几十年来的努力,已经取得了系统的研究成果。


早期的计算机模式识别研究着重在模型的建立上。50年代末,F.Rosenblatt提出了一种简化的模拟人脑进行识别的数学模型-感知机,初步实现了通过给定类别的各个样本对识别系统进行训练,使系统在学习完毕后具有对其他未知类别的模式进行正确分类的能力,60年代用统计决策理论求解模式识别问题得到了迅速的发展,70年代前后出版了一系列反映统计模式识别理论和方法的专著。

1962年,R.Narasimahan提出了一种基于基元关系的句法识别方法,傅京孙在这个领域进行了卓有成效的工作,形成了句法模式识别的系统理论。80年代,J.J.Hopfield深刻揭示出人工神经元网络所具有的联想存储和计算能力,为模式识别技术提出了一种新的途径,短短几年在很多方面就取得了显著成果,从而形成了模式识别的人工神经元网络方法的新的学科方向。

一个计算机模式识别系统基本上事有三部分组成的,即数据采集、数据处理和分类决策或模型匹配。

任何一种模式识别方法都首先要通过各种传感器把被研究对象的各种物理变量转换为计算机可以接受的数值或符号(串)集合。习惯上,称这种数值或符号(串)所组成的空间为模式空间。为了从这些数字或符号(串)中抽取出对识别有效的信息,必须对它进行处理,其中包括消除噪声,排除不相干的信号以及与对象的性质和采用的识别方法密切相关的特征的计算(如表征物体的形状、周长、面积等等)以及必要的变换(如为得到信号功率谱所进行的快速傅里叶变换)等。然后通过特征选择和提取或基元选择形成模式的特征空间。以后的模式分类或模型匹配就在特征空间的基础上进行。系统的输出或者是对象所属的类型或者是模型数据库中与对象最相似的模型编号。

针对不同应用目的,这三部分的内容可以有很大的差别,特别是在数据处理和识别这两部分,为了提高识别结果的可靠性往往需要加入知识库(规则)以对可能产生的错误进行修正,或通过引入限制条件大大缩小待识别模式在模型库中的搜索空间,以减少匹配计算量。在某些具体应用中,如机器视觉,除了要给出被识别对象是什么物体外,还要求出该物体所处的位置和姿态以引导机器人的工作。

模式识别已经在天气预报、卫星航空图片解释、工业产品检测、字符识别、语音识别、指纹识别、医学图像分析等许多方面得到了成功的应用。所有这些应用都是和问题的性质密切不可分的,至今还没有发展成统一的、有效的可应用于所有的模式识别的理论。

当前的一种普遍看法是不存在对所有的模式识别问题都使用的单一模型和解决识别问题的单一技术,我们现在拥有的是一个工具袋,我们所要做的是结合具体问题把统计的和句法(结构)的识别方法结合起来,把统计模式识别或句法模式识别与人工智能中的启发式搜索结合起来,把人工神经元网络与各种以有技术以及人工智能中的专家系统,不确定方法结合起来,深入掌握各种工具的效能和应用的可能性,互相取长补短,开创模式识别应用的新局面。

对数据挖掘而言,数据库提供数据管理技术,机器学习和统计学提供数据分析技术。由于统计学往往醉心于理论的优美而忽视实际的效用,因此,统计学界提供的很多技术通常都要在机器学习界进一步研究,变成有效的机器学习算法之后才能再进入数据挖掘领域。从这个意义上说,统计学主要是通过机器学习来对数据挖掘发挥影响,而机器学习和数据库则是数据挖掘的两大支撑技术。从数据分析的角度来看,绝大多数数据挖掘技术都来自机器学习领域,但机器学习研究往往并不把海量数据作为处理对象,因此,数据挖掘要对算法进行改造,使得算法性能和空间占用达到实用的地步。同时,数据挖掘还有自身独特的内容,即关联分析。

而模式识别和机器学习的关系是什么呢,传统的模式识别的方法一般分为两种:统计方法和句法方法。句法分析一般是不可学习的,而统计分析则是发展了不少机器学习的方法。也就是说,机器学习同样是给模式识别提供了数据分析技术。

至于,数据挖掘和模式识别,那么从其概念上来区分吧,数据挖掘重在发现知识,模式识别重在认识事物。

机器学习的目的是建模隐藏的数据结构,然后做识别、预测、分类等。因此,机器学习是方法,模式识别是目的。

 

总结一下吧。只要跟决策有关系的都能叫 AI(人工智能),所以说 PR(模式识别)、DM(数据挖掘)、IR(信息检索) 属于 AI 的具 体应用应该没有问题。 研究的东西则不太一样, ML(机器学习) 强调自我完善的过程。 Anyway,这些学科都是相通的。

来源:申请方                         时间:2017-03-10

首页
电话
短信
联系